Determination of Polarization Transfer Coefficients $C_{x'}$ and $C_{z'}$ for Quasi-Free Hyperon Photoproduction off the Bound Neutron HUGS 2015

Colin Gleason

University of South Carolina

June 15, 2015

Colin Gleason (USC)

Polarization Transfer Coefficients

June 15, 2015 1 / 14

Overview

- 1 QCD and Baryon Spectroscopy
- 2 g13 Experiment at JLab
- (3) Analysis of $\vec{\gamma}d \to K^0 \vec{\Lambda}(p)$
- 4 Extraction of $C_{x'}$ and $C_{z'}$
- 5 Preliminary Results

Colin Gleason (USC)

Conclusion

(日) (周) (三) (三)

Baryon Spectroscopy

Provides a way to measure the N* states

- $\bullet \ \ \mathsf{Excited} \ \ \mathsf{atomic} \ \mathsf{states} \rightarrow \mathsf{understanding} \ \mathsf{of} \ \mathsf{atom}$
- Excited nucleon states \rightarrow understanding of nucleon
- At low energies, the strong coupling constant becomes large and perturbation theory can not be used to solve QCD
- Map N* spectrum to learn about the internal structure of nucleons
- Goal is to provide information about the relative degrees of freedom

http://ebac-theory.jlab.org/

(日) (周) (三) (三)

Constituent quark models three valence quarks Di-quark models bound quark pair \rightarrow less degrees of freedom Lattice QCD numerical solution to QCD

Colin Gleason (USC)

Polarization Transfer Coefficients

June 15, 2015 3 / 14

Missing Resonance Problem

Constituent quark models predict many N* states that have yet to be observed $$\state{tabular}$$

- Do these resonances exist?
 - Some N* states have been observed that don't appear in diquark models, but more evidence is needed
- Need more data
 - Majority of data out there is in the πN final state
 - Some resonances couple weakly to this channel
 - Final states with strangeness $(K\Lambda, K\Sigma)$: $\gamma p \rightarrow K^+\Lambda$ moving $N(1900)^{\frac{3}{2}^+}$ from ** to * * *
 - $\gamma n \to K^0 \Lambda$ senstive to $\star \star N(2080) \frac{3}{2}^-$

	Status									
Particle J^P	overa	$11 \pi N$	γN	$N\eta$	$N\sigma$	$N\omega$	ΛK	ΣK	$N\rho$	$\Delta \pi$
N 1/2 ⁺	****									
$N(1440) 1/2^+$	****	****	****		***				*	***
$N(1520) 3/2^{-}$	****	****							***	***
$N(1535) 1/2^{-}$	****	****	****	****					**	*
$N(1650) 1/2^{-}$	****	****	***	***			***	**	**	***
$N(1675) 5/2^{-}$	****	****	***	*			*		*	***
$N(1680) 5/2^+$	****	****	****	*	**				***	***
N(1685) ??	*									
$N(1700) 3/2^{-}$	***	***								***
$N(1710) 1/2^+$	***	***	***	***		**	***	**		**
$N(1720) 3/2^+$	****	****	***	***			**	**	**	*
$N(1860) 5/2^+$	**	**							*	*
$N(1875) 3/2^{-}$	***	*	***			**	***	**		***
$N(1880) 1/2^+$	**	*			**					
$N(1895) 1/2^{-}$	**	*	**	**			**			
$N(1900) 3/2^+$	***	**	***	**		**	(***)	**	*	**
$N(1990) 7/2^+$	**	**	**				~	*		
$N(2000) 5/2^+$	**	*	**	**			**	*	**	
$N(2040) 3/2^+$	*									
$N(2060) 5/2^{-}$	**	**	**					**		
$N(2100) 1/2^+$	*									
$N(2150) 3/2^{-}$	**	**	**				**			**
$N(2190) 7/2^{-}$	****	****	***			*	**		*	
$N(2220) 9/2^+$	****	****								
$N(2250) 9/2^{-}$	****	****								
$N(2600) 11/2^-$	***	***								
$N(2700) 13/2^+$	**	**								

K.A. Olive et al., Review of Particle Physics

• • = • • = •

June 15, 2015 4 / 14

Polarization Observables in $K\Lambda$ Photoproduction

$$S_{fi} = \frac{1}{2\pi^2} \left(\frac{M_n M_\Lambda}{4E_\Lambda E_K E_n E_\gamma} \right)^{\frac{1}{2}} \mathcal{M}_{fi} \delta^{(4)} (p_n + p_\gamma - p_K - p_\Lambda)$$

- $\bullet~16$ Polarization observables are derived from the matrix elements $\mathcal{M}_{\textit{fi}}$
- Sensitive to the physics involved in the resonant reaction

Unpolarized Cross Section	σ_0			
Single		Ρ	Σ	Т
Beam-Recoil	$C_{x'}$	$C_{z'}$	$O_{x'}$	$O_{z'}$
Target-Recoil	$T_{x'}$	$T_{z'}$	$L_{x'}$	$L_{z'}$
Beam-Target	Ε	F	G	Н

• 8 carefully chosen observables are needed to determine the full scattering amplitude

Colin Gleason (USC)

Polarization Transfer Coefficients

June 15, 2015 5 / 14

Previous Studies for $\gamma n \rightarrow K^0 \Lambda$

Neil Hassall: Ph.D. Thesis for g13 (2010). Shown are his preliminary results for $O_{x'}$

Measured cross sections of with 1 1350MeV $E_{\gamma} = 0.8 - 1.1$ GeV off ¹²C and LD_2 targets 1450MeV and the second second (a) 0.9≤E,<1.0 [GeV] (b) 1.0≤E.<1.1 [GeV]</p> -K⁰A, Kaon-MAID 1550MeV 0.9≤cosθ_{v^{ay}→}<1.0 0.9≤cosθ_{k²1 ab}<1.0 -KºA, SLA A, Kaon-MAID A SLA 1 1750MeV 1850MoV 0.4 0.5 0.6 0,6 Ps+ [GeV/c] p_{x+} [GeV/c] K. Tsukada et al., Phys. Rev. C 78, -1 1 -1 014001 cos0'k

in Japan

- In progress: cross sections from g13 and g10
- g14 using a polarized target

Laboratory of Nuclear Science (LNS)

(日) (周) (三) (三)

Hall-B at Jefferson Lab

Photon Tagger

- Photons are produced via the bremsstrahlung technique.
- $E_{\gamma} = E_0 E_e$

• *E_e*: 1.987 GeV and 2.649 GeV

CEBAF Large Acceptance Spectrometer (CLAS)

arXiv:1109.1720 [hep-ph]

(日) (周) (三) (三)

• $E_{\gamma} \approx 20 - 95\%$ of E_e

D.I. Soberet al., The bremsstrahlung tagged photon beam in Hall B at JLab

Polarization Transfer Coefficients

Analysis Overview: $\vec{\gamma} d \rightarrow K^0 \vec{\Lambda}(p)$

•
$$K^0 \rightarrow \pi^+\pi^-$$
 and $\Lambda \rightarrow p\pi^-$

• Select events which have 2 positive and 2 negative tracks

Particle Identification

Particles were identified based on their velocity and momentum in CLAS

 $\Delta t = t_v - t_\gamma \text{ where } t_v \text{ is the reconstructed event vertex time}$ using the trajectory in CLAS of the fastest particle and t_γ is the time that the photon arrived at the event location

Polarization Transfer Coefficients

Selection of K^0 and Λ

- Recall that $\Lambda \to p\pi^-$ and $K^0 \to \pi^+\pi^-$
- The invariant masses of $p\pi^-$ ($M_{p\pi^-}$) and $\pi^+\pi^-$ ($M_{\pi^+\pi^-}$) were used to reconstruct and select the Λ and K^0
- Filter out $p\pi^+\pi^-\pi^-$ events that do not come from the $K^0\Lambda$ final state

•
$$M_{p\pi^-} = \sqrt{(\tilde{p}_p + \tilde{p}_{\pi^-})^2} \approx M_{\Lambda}$$

- $M_{\pi^+\pi^-} = \sqrt{(\tilde{p}_{\pi^+} + \tilde{p}_{\pi^-})^2} \approx M_{K^0}$
- Cuts were calculated based on gaussian fits to the projections of the x-axis and y-axis.
- Events were kept if they fall within the red box
- Note: Some combinatorial background. Arises when both π⁻'s yield a good K⁰ and a good Λ

M(π⁺π⁻) vs. M(pπ⁻)

Colin Gleason (USC)

Identification of the Final State

- The $K^0\Lambda$ final state was identified using the missing mass (M_X) technique
- $\gamma n \to K^0 X$ where $M_X = \sqrt{(\tilde{p}_\gamma + \tilde{p}_n \tilde{p}_{K^0})^2}$
- $\gamma d \to K^0 \Lambda X$ where $M_X = \sqrt{(\tilde{p}_\gamma + \tilde{p}_d \tilde{p}_{K^0} \tilde{p}_{\Lambda})^2}$

The quasi-free reaction is selected by accepting events of $p_X < 0.2 \text{ GeV}/c$

Extraction of $C_{x'}$ and $C_{z'}$

• From the equation for the polarized cross section of $K\Lambda$ photoproduction, the experimental asymmetry, A, can be derived:

$$A = \frac{N^+ - N^-}{N^+ + N^-} = \alpha P_{circ} C_{x'/z'} \cos(\theta_{x'/z'})$$

• $N^+(N^-)$ is the number of events with right (left) handed helicity • $\alpha = 0.642 \pm 0.013$ and is the self-analyzing power of Λ

Colin Gleason (USC)

Polarization Transfer Coefficients

11 / 14

Preliminary Results: E_{γ} Bins

• Preliminary estimates of $C_{\chi'}$ and $C_{\gamma'}$ for $K^0\Lambda$ photoproduction are extracted for the first time • $C_{\chi'}^2 + C_{Z'}^2 + P^2 \leq 1$

Polarization Transfer Coefficients

June 15, 2015 12 / 14

Conclusion and Outlook

- Many resonant states predicted by constituent quark models have yet to be observed
- Hyperon channels have a strong coupling to some of these resonances
- First estimates of $C_{x'}$ and $C_{z'}$ were extracted
- \bullet Simulations will be done to understand shape of Σ background in the missing mass
- Estimate systematic uncertainties (photon polarization, α, background, analysis method)
- Extract observables using different methods (2d fit, maximum likelihood)

- 本間下 本臣下 本臣下 三臣

Conclusion

Colin Gleason (USC)

Polarization Transfer Coefficients

June 15, 2015 14 / 14

2